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We report the analytical study of a class of chemical reactions described as birth-and-death stochastic
processes ruled by a master equation compatible with the mass action law of chemical kinetics. We solve
analytically this master equation to find the generating functions of the fluctuating fluxes and of the Lebowitz-
Spohn action functional. These generating functions are explicitly shown to obey fluctuation theorems. In the
case of fluxes, we derive relations for the nonlinear response coefficients, extending Onsager’s reciprocity

relations. Moreover, symmetry relations reminiscent of the fluctuation theorem are obtained for the finite-time
probability distributions of the fluxes. The temporal disorder of the stochastic process is also characterized and

related to the thermodynamic entropy production.

DOI: 10.1103/PhysRevE.77.031137

I. INTRODUCTION

Chemical reactions are dynamical processes evolving on
several scales. At the microscopic level, a reacting system is
composed of molecules of different species involved in in-
elastic collisions. During such collisions, the reactant mol-
ecules meet and form a transition complex, which thereafter
dissociates into the product molecules. Each reactive event is
ruled by the reversible Hamiltonian motion of the nuclei on
the Born-Oppenheimer potential energy surface of a given
electronic state. Since these surfaces control both the vibra-
tional and reactional motions of the molecules, the scales of
a reactive event are of the same order as for the vibrational
motion, i.e., they take place over distances of 1-10 A in
10-100 fs depending on the masses of the nuclei. Some re-
actions may require longer time scales if they proceed, for
instance, by quantum tunneling, but typical reactive events
can be supposed to happen quasi-instantaneously with re-
spect to the mesoscopic time scale over which the numbers
of reactive molecules evolve.

At the mesoscopic or macroscopic levels, chemical reac-
tions are described in terms of the numbers of molecules
involved in the reaction. These numbers undergo random
jumps each time a reactive event occurs somewhere in the
system. The jumps take integer values determined by the
changes in the numbers of molecules which are consumed or
produced during each reactive event (the so-called stoichio-
metric coefficients) [1-3]. Although the time scale of each
reactive event is typically very short of the order of 10-100
fs, the intervals between successive reactive events may ex-
tend over much longer time scales of the order of millisec-
onds, seconds, or else, depending on the reaction constant,
the concentrations of the reactants, and the volume of the
system.

Because of the important separation of scales both in time
and in space, the reactive events happen randomly in time,
here or there in the whole volume of the reactional system.
Contrary to the thermal fluctuations which affect the me-
chanical properties, the randomness of chemical reactions
concerns the numbers of molecules themselves. In this re-
gard, chemical reactions are special and their study requires
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appropriate extensions of the basic methods of statistical
thermodynamics. At the mesoscopic level, the random jumps
can be described as Markovian birth-and-death processes.
The master equation ruling these stochastic processes should
reduce to the rate equations of chemical kinetics for the mo-
lecular concentrations at the macroscopic level. Such a mas-
ter equation was proposed by Nicolis and co-workers who
showed that the transition rates can be fixed by the mass
action law of chemical kinetics [4-9]. This master equation
applies to chemical reactions evolving far as well as close to
thermodynamic equilibrium.

Recently, much interest has been devoted to the so-called
fluctuation theorems, most of which concern mechanical
nonequilibrium systems [10-16,18-23]. Fluctuation theo-
rems have also been proved for chemical stochastic pro-
cesses [24-28]. These fluctuation theorems concern either
dissipation or the fluxes of matter from reactants to products.
Each fluctuation theorem characterizes the breaking of de-
tailed balance as the system is driven out of equilibrium
[14-17]. This breaking manifests itself in the positivity of
entropy production or in the nonvanishing of the fluxes from
reactants to products. At equilibrium, detailed balance is re-
covered implying that the reactive events proceeding in one
direction are balanced by the reversed reactions. Out of equi-
librium, the balance is broken because of the net transforma-
tions of reactants into products. The fluctuation theorem
shows that the probabilities of the reversed reactive events
are smaller than the probabilities of the forward reactive
events by a factor increasing exponentially with the magni-
tudes of the fluctuations and of the external nonequilibrium
drives. These latter are the so-called De Donder affinities
given by the free enthalpy changes in the reactions [1-3].
The fluctuation theorem remarkably explains that unidirec-
tional fluxes tend to dominate the fluctuations as the system
is driven away from equilibrium. If the chemical reactions
are pushed far away from equilibrium, the reversed reactive
events can be so rare that their probabilities vanish. In this
case, the chemical reaction is said to be fully irreversible
because its entropy production can be supposed to be infi-
nite. We notice that such situations are not uncommon if the
products of the reaction are rapidly evacuated. Furthermore,
the fluctuation theorem has been extended to chemical sys-
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tems with time-dependent external control [26] and applied
to enzymes and mechanochemical systems such as molecular
motors [27,28].

A considerable advance has been performed in Refs.
[25,29-31], where a fluctuation theorem was derived for the
several independent fluxes which may cross a nonequilib-
rium system. Indeed, if a chemical reactor is connected to
several reservoirs of reactants as it is the case for continu-
ously stirred tank reactors, several independent fluxes may
flow from the different reactants to their products. Contrary
to mechanical systems where these different fluxes are driven
by mechanical forces directly acting on the molecules, the
chemical fluxes are driven by affinities which are defined
after cycles containing several successive states are com-
pleted. It is by properly dealing with these cycles thanks to
the graph theory of Hill, Schnakenberg, and others [32-34],
that the fluctuation theorem for currents was proved in Ref.
[30]. Thanks to this fluctuation theorem, it is possible to
obtain relationships among the nonlinear response coeffi-
cients beyond the Onsager reciprocity relations for the linear
response coefficients [35]. These important results concern
general nonequilibrium systems. Among them, the nonequi-
librium chemical reactions are important because of the
broad diversity of their applications in chemistry, biology,
and mineralogy. Moreover, advances in single-molecule
techniques and chemical sensors are such that the fluctua-
tions of chemical reactions may soon be experimentally ob-
servable.

The purpose of this paper is to report on the theoretical
study of a class of chemical reactions for which the master
equation can be solved analytically to obtain the generating
function of the fluctuating fluxes, not only on average in the
steady state but also over a finite-time interval. For these
chemical reactions, an analytical expression is thus given for
the generating function of the independent fluctuating fluxes,
which is shown to obey the symmetry of the fluctuation theo-
rem. This allows us to get not only the linear but also the
nonlinear response coefficients and to verify symmetry rela-
tionships extending Onsager’s reciprocity relations. Further-
more, the dynamical randomness or temporal disorder of the
chemical stochastic process is characterized in terms of its 7
entropy per unit time [36]. Its difference with respect to the
time-reversed 7 entropy per unit time [37] is shown to be
equal to the thermodynamic entropy production of the reac-
tions. Accordingly, this latter appears to result from a time
asymmetry in the nonequilibrium fluctuations of the chemi-
cal reactions.

The paper is organized as follows. In Sec. II, we present
the theoretical results which are applied to a class of chemi-
cal reactions in Sec. III. Section IV is devoted to the finite-
time characterization of the fluctuations. Conclusions are
drawn in Sec. V.

II. GENERALITIES

In this section, we summarize the main theoretical results
that will be used in the following sections. First of all, we
define the framework by introducing the chemical master
equation ruling the birth-and-death stochastic processes,
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which describe nonequilibrium chemical reactions at the me-
soscopic level. In this framework, we present the fluctuation
theorem for the independent fluxes proved in Refs. [25,30]
and its implications for the nonlinear response coefficients
[31]. In the last section, the temporal disorder of the stochas-
tic processes is characterized in terms of their 7 entropies per
unit time and the relationship to the thermodynamic entropy
production is stated.

A. Master equation

Chemical reactions can be driven out of equilibrium by
pumping reactants into a reactor and allowing the outflow of
products. If the reactor is continuously stirred and main-
tained at constant temperature, the system is homogeneous
and isothermal. Under such conditions, the reacting system
can be described by the randomly fluctuating numbers of
molecules of the intermediate species {Xj}jzl. On the other
hand, the reactants and products are denoted by {R;}/_,. The
possible reactive events form the following network of the
reactions p=1,2,...,p:

2 Vle +E Voi J‘_E Vle +E VoiXj- (1)

—pl 1
During each reactive event of the reaction p, the number of
molecules X; changes by an integer value given by the stoi-
chiometric coefficient as follows:

> <
Vpj = Vpj = Vpj =7 Vepj ()

since v=,=v .
The reactive events occur randomly with transition rates
given by the mass action law as follows:

W, (XX +w,)
X, X;-1X;-2  X;—v,+1
=0k R. 10 A / —) Pl
H[ ]pHQ T .
(3)

where () is an extensivity parameter such as the volume of
the reactor, kp is the reaction constant, and the brackets de-
note the concentrations [4-9,33,38]. The probability P(X;z)
that the reactor contains X molecules at time ¢ is thus ruled
by the master equation

—P(X 1) = E [P(X - v,:)W,(X - v,]X)
p==*1
- P(X;)W_(X|X - »,)]. 4)

The birth-and-death stochastic process corresponding to this
master equation can be simulated numerically by an algo-
rithm proposed by Gillespie [39,40]. The chemical master
equation (4) obeys a H theorem, allowing us to identify the
mean entropy production in terms of the probability distribu-
tion P(X ;1) [9,24,25,33].

In this framework, the macroscopic description is recov-
ered by defining the chemical concentrations of the interme-
diate species in terms of the statistical averages of the num-
bers of molecules as
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[x,]= é% PX:0)X, = %ﬁ (5)

These concentrations can be shown to obey the rates equa-
tions of chemical kinetics in the large-system limit () — o,

We assume that the Markovian process is ergodic so that
the statistical averages can be performed by time averaging
in the equilibrium or nonequilibrium steady states. These
steady states are described by the probability distribution
given by the stationary solution of the master equation (4)
such that (d/dt)P(X)=0.

B. Fluctuation theorem for the independent fluxes

Out of equilibrium, the reactor is crossed by fluxes of
molecules flowing from the reservoirs of reactants to the pipe
evacuating the products and the excess of reactants. In this
flow, the molecules are transformed by the chemical reac-
tions. In this regard, the currents in this nonequilibrium sys-
tem correspond to the fluxes from reactants to products.
These fluxes are driven by the affinities (also called the ther-
modynamic forces) given by the differences of free enthalp-
ies between products and reactants if the reaction proceeds
under constant pressure and temperature. The free enthalpies
are given in terms of the chemical potentials and they are
therefore fixed by the concentrations [R;] of the reactants and
products. The equilibrium state is reached if all these con-
centrations are in their equilibrium ratios satisfying the de-
tailed balance conditions. The system is out of equilibrium if
the concentrations do not satisfy these conditions. A priori,
the nonequilibrium states depend on r possible parameters
which are the concentrations {[R;]}\_,. However, the equilib-
rium states form a manifold in this r-dimensional space. This
manifold is determined not only by the detailed balance con-
ditions, but also by the ergodic properties of the master equa-
tion (4). A method to identify all the independent affinities is
to use the graph theory of Hill, Schnakenberg, and others
[32-34].

A graph G is associated with the Markovian stochastic
process ruled by the master equation (4). The vertices of this
graph are the states defined by the vectors X € N¢ of molecu-
lar numbers. The vertices are connected by directed edges

p

e=X—X'=X+w, corresponding to each nonvanishing tran-
sition rate W,( X ﬁX’). Among all the possible subgraphs of
the graph G, a very special role is played by the cycles. The
concept of maximal tree allows us to identify a fundamental
set of cycles {C;}, which provides a decomposition T(G) of
the graph G [33]. We notice that there exist, in general, sev-
eral maximal trees which can be defined by linear combina-
tions of T(G) with its cycles.

Remarkably, the ratio of the products of the transition
rates along the two possible orientations of a cycle C; is
independent of the instantaneous numbers of molecules and
only depends on the chemical concentrations in the external
reservoirs fixing the nonequilibrium constraints. Indeed, ac-
cording to Eq. (3), we observe with Schnakenberg [33] that
the ratio
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r V<
kpl_[ [Rz] pi
1 W, (XX +w,) 11 i=1 _ AT = Ay
e Wl Xm0 ey [R.]s
—p il Pt
i=1

(6)

only depends on the chemical concentrations of reactants and
products and defines the affinity corresponding to the cycle
C,. In Eq. (6), T denotes the temperature and kz Boltzmann’s
constant. The concept of affinity was introduced by De
Donder [1] as the free enthalpy change in a reaction. For the
cycle we here consider, the original definition of affinity
would give AZ=—Ei’p€Cl,u,~vp,- in terms of the chemical poten-
tials w;=u) +kpT In([R;]/c®), where u! are the reference val-
ues for the concentration ¢ of one mole per liter. In the
following, we use the affinities A;=.A,;/(kzT) expressed in
units of the thermal energy kT following the convention of
Callen [41]. We emphasize that the affinities A; are defined
for the cycles C; of the graph G. Several cycles C; may
correspond to the same macroscopic reaction 7y, whereupon
the affinities A; of these cycles correspond to the same mac-
roscopic affinity A, In this way, all the independent affinities
{A.} of the nonequilibrium process can be identified.

According to the stochastic process, the time evolution of
the system is a sequence of random jumps due to the reactive
events occurring at the successive times 0<t; <tp,<---
<t,<t. A path or history of the process can thus be repre-
sented as

pLoP P P
X(1) =Xo—X,—=Xp— =X, (7)

The random reactive events contribute to the independent
currents or fluxes from reactants to products. These fluxes
are given by random Dirac delta peaks each time a cycle
contributing to a given macroscopic reaction vy is closed. We
can suppose that the cycle C; closes at the instant #, a tran-
sition e, occurs on its chord /. Accordingly, the instantaneous
current or flux associated with the macroscopic reaction 7 is
defined by

J =2 X Sie)dt-1,), (8)

IEy n=—x

where S)(e,,)= = 1 whether the transition e, occurring at time
t, is parallel or antiparallel to the chord / of the cycle C;
contributing to the reaction y [30]. The so-called Helfand
moment [42] associated with the flux (8) is defined as the
cumulated flux

G(1) = f dr'j (1) 9)

0

For each path (7), this Helfand moment depicts a piecewise
constant function of time taking positive or negative integer
values and giving the number of reactive events contributing
to the macroscopic reaction of independent affinity A., since
the initial time 7=0.
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The fluctuation theorem for the independent currents or
fluxes can now be enunciated as [30].

Fluctuation theorem for the fluxes. In a nonequilibrium
steady state of macroscopic affinities A={A,} defined by the
conditions (6), the generating function of the fluctuating cu-
mulated fluxes G(1)={G (1)},

O(N;A) = lim - —ln<e MGy (10)

t—00
obeys the symmetry
ON;A)=0(A4 - \A4). (11)

Taking the Legendre transform of the generating function,
we obtain the fluctuation theorem in the form

pmb[} f i) € (B4 d§)]

=exp § At
Prob\‘ fdt](t)e( &- §+d§)J

(l—>00), (12)

showing that, in the long-time limit, the probabilities of the
reversed fluxes —& are exponentially suppressed by a factor
growing at the rate given by the sum of the affinities A with
the magnitudes & of the random fluxes averaged over the
finite time interval ¢. This rate is precisely the rate of entropy
production

-J-A=0, (13)

dt |

if the random fluxes take their mean values

= (& = lim— f ) = im= (G (1) = 52(0:4),

t—>°° [-»oo
(14)

in some steady state of affinities A. It should be emphasized
that these mean fluxes are nothing else but the reaction rates
of macroscopic chemical kinetics. Indeed, the mean flux J,, is
the mean frequency of the reactive events of the macroscopic
reaction . Each one of these reactive events contributes to
increasing the entropy by the associated affinity A, in agree-
ment with Eq. (13).

We notice that, in a steady state, the entropy production
can also be obtained in terms of a further fluctuating quantity
introduced by Lebowitz and Spohn [15],

I W, (X,_1|X,)
Z(t):J dr' >, 8t t)ln (Kot X
0

n=—o0 (X |Xn l) (15)

which measures the breaking of detailed balance along a ran-
dom path (7). The fluctuations of this quantity are character-
ized by its generating function

1
q(7) = lim — ;ln<e"7z(’>>, (16)
t—00

which obeys the fluctuation theorem [15]
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q(n)=q(1-7). (17)
The entropy production (13) is equivalently given by
d;S
j = —(0) =lim— (Z(t)) =0, (18)
t—oo I

as discussed in Refs. [15,24].

C. Symmetries for the response coefficients

The macroscopic fluxes (14) can be expanded around the
state of thermodynamic equilibrium where all the affinities
vanish {A =0} as follows:

1 1
Jo= 2 LopAp+ 52 MapApAy+ 3, D NogyoAph,As
B * By ‘B0

+ o (19)

For small perturbations in the affinities {4}, these expan-
sions give the values of the fluxes close to equilibrium. The
linear response of the system is characterized by the Onsager
coefficients L,g, and the nonlinear response by the higher-
order coefficients M ,g,, Nogys,--- These coefficients are de-
fined in terms of the generating function (10) according to

70
L 0;0 20
= g AB( ), (20)
P
Mg =—22(0:0). 1)
Ny IALIA,
o
NaB‘y5: Q (an) > (22)
INg DA IA, DA,

Since the response coefficients are obtained by differentiat-
ing the generating function with respect to its arguments,
symmetry relations can be deduced for them as the conse-
quence of the fluctuation theorem (11). In this way, the On-
sager reciprocity relations L,g=Lg, could be rederived in
Ref. [13] for thermostated systems, and in Ref. [15] for me-
chanical stochastic systems. In Refs. [25,31], it has been
shown that new relationships can also be deduced this time
for the nonlinear response coefficients. In particular, the
second-order response coefficients (21) are given by the
highly nontrivial formula [31]

@@«» Pay (g, (23)

M
b7 IAp

in terms of the matrix of diffusivities in the nonequilibrium
steady state

70 1
Dapld) == — Mﬁ(o A)_}me (AG,(NAG K1),
(24)

where the statistical averages are taken with respect to the
nonequilibrium steady state and AG,(t)=G (1) —(G ().

031137-4



TEMPORAL DISORDER AND FLUCTUATION THEOREM IN...

Equation (23) gives the second-order response coefficients
(21) in terms of the diffusivities (24), which characterize the
nonequilibrium fluctuations. Although the diffusivities re-
duce to the linear response coefficients at equilibrium
D ,5(0)=L,, it is their derivatives which connect to the non-
linear response coefficients in Eq. (23). The formula (23) is
highly nontrivial because the second-order response coeffi-
cients (21) are defined by two derivatives with respect to A,
while only one remains in the right-hand side of Eq. (23).
Symmetry relations similar to Eq. (23) have been obtained in
Ref. [31] for all the nonlinear response coefficients. Each
response coefficient is thus related to a fluctuation property,
at arbitrary orders in the response [31].

D. Temporal disorder and entropy production

The dynamical randomness or temporal disorder of a
continuous-jump stochastic process can be characterized in
terms of its 7 entropy per unit time [36]. An analogy here
exists with the thermodynamic entropy per spin of a one-
dimensional spin chain. This thermodynamic entropy charac-
terizes the spatial disorder of the instantaneous statistical
state of the spin chain. This characterization is here applied
to the random paths (7) of the stochastic process seen along
the time axis instead of the space axis. From this viewpoint,
the 7 entropy per unit time gives us the amount of temporal
disorder in the random paths of the process.

The birth-and-death stochastic processes are continuous in
time since the waiting times between the jumps are exponen-
tially distributed random variables. Therefore, the paths (7)
have to be sampled with a sampling time 7 before defining an
entropy per unit time. The 7 entropy per unit time is thus
defined as the mean decay rate of the so-sampled path prob-
abilities [36]. Applying this definition to the stochastic pro-
cess of the chemical master equation (4), the 7 entropy per
unit time is given by

h(7) = pEX Py(X - v)W,(X - vp|X)1nm +0(n).
(25)

Similarly, the time-reversed 7 entropy per unit time is ob-
tained as [37,43-45]

R(.\ _ — - —
h(7) = p% Py(X - v)W,(X - v,|X)In W_(X|X-w,)
+0(7). (26)

We notice that these dynamical entropies increase as the
sampling time decreases, 7— 0. The reason is that the sto-
chastic process is continuous in time so that it generates dy-
namical randomness on an arbitrarily short time interval.
This feature is due to the approximation of the microscopic
dynamics by the stochastic process. Indeed, the deterministic
character of the microscopic Hamiltonian dynamics would
be revealed if the process was sampled on the short time
scale 7, of the collisions. For sampling times shorter than the
collision time, 7< 7, the dynamical entropies would tend to
saturate because of the deterministic microscopic dynamics.
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On this microscopic time scale, the stochastic model would
thus overestimate the actual dynamical randomness of the
process [36].

A fundamental result is that the difference between the
time-reversed and the forward 7 entropies per unit time is
equal to the thermodynamic entropy production [37,43-46].
Indeed, we get from Egs. (25) and (26) that

HE(7) = () = %ZX [Pu(X - v W (X - ,|X)
P

- PyX)W_(X|X - v,)]
Py(X-v,)W,(X-v]|X)
PS[(X)W—p( X|X_ Vp)

XIn +0(7),

27

which is the known expression for the thermodynamic en-
tropy production involved in the H theorem of the master
equation (4) [9,33] and equivalent to Egs. (13) and (18) as
shown explicitly in Refs. [24,25,37]. We thus find that the
thermodynamic entropy production arises from the time
asymmetry in the temporal disorder if the stochastic process
is driven out of equilibrium [37,43-46]

S| _ lim{ () = ()] = 0. (28)

dt |

At equilibrium where detailed balance is satisfied, the time-
reversal symmetry hf=h is recovered and the thermody-
namic entropy production vanishes. Out of equilibrium, the
time asymmetry manifests itself in the temporal disorder,
leading to a phenomenon of temporal ordering [46].

III. SOLVABLE MODELS OF CHEMICAL REACTIONS

Our purpose in this section is to show that the generating
function of the fluxes can be obtained analytically for a class
of chemical reactions, allowing the direct verification of the
fluctuation theorem and of the symmetry relations among the
nonlinear response coefficients.

A. Reaction network, master equation,
and nonequilibrium steady state

We consider the reaction network

ki kyp iy
Ri=X, R,=X, ..., R=X (29)
-1 k—2 k—r

The molecules of the species X enter into the system from r
different reservoirs {Rp}zzl. Equivalently, the molecules of
the species X are produced by r different reactions from so
many reactants. k-, denote the reaction constants. According
to the mass action law [4-9,24,25,33,38], the transition rates
of these reactions are proportional to the concentrations and
are given by

W (X|X+1) =k, (R,), (30)
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W_ (XX =1)=k_X, (31)

with (R )=Q[R,] and p=1,2,...,r. The chemical reactions
are linear in the sense that the transition rates are constant or
linear in the molecular number X.

The master equation ruling the time evolution of the prob-
ability P(X,7) that the system contains X molecules of the
species X at the time 7 takes the form

r

%P(X, )= P(X~ 1,0k, (R)+ > P(X+ L,)k_,(X+1)
p=1 p=1

- 2 P(X, 0k, (R, +k_,X]. (32)

p=1

The concentration (5) of the species X thus evolves in time
according to the following rate equation of macroscopic
chemical kinetics:

B Seri-Sem 6
p=1 p=1

with [X]=(X)/€). This equation is linear as a consequence of
the linearity of the transition rates. For the same reason, any
statistical moment (X”) obeys the same linear equation.
Therefore, the concentration and all the moments converge
exponentially to their stationary value at the rate E;zlk_p.

The stationary state of the master equation (32) is given
by the Poisson distribution

0¥
Py(X)=e <X>—X! : (34)
with the mean value
2} k+p<Rp>
x) =" (35)
2k,
p=1

The fact that the steady state is described by a Poisson dis-
tribution finds its origin in the linearity of the chemical re-
actions. We notice that, typically, the stationary distributions

of nonlinear chemical reactions are not Poissonian
[4-9,33,38].

B. Graph analysis and affinities

We emphasize that the macroscopic affinities are not ap-
parent in the master equation contrary to the systems where
the affinities are given in terms of mechanical forces. In or-
der to identify the affinities, we use graph theory [33]. The
graph of this stochastic process is depicted in Fig. 1.

Using the cycle which starts from the state X in Fig. 1
going to the state X+1 by some edge p=a and returning to
the state X by the edge —r, the corresponding macroscopic
affinity is defined by Eq. (6) as
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(a)
X-1 X p=2 X+1

FIG. 1. (a) Graph G associated with the reaction network (29).
(b) Subgraph T(G)+1 composed of the maximal tree T(G) formed
p=2
by all the edges of the reaction p=r and the chord /=X—X+1,
forming the cycle used to define the macroscopic affinity (36) with
a=p=2.

Woa XX+ DW_(X+1]X)  k_k,ofRo)

A =In
W_ o X+ X)W, (X|X+1) k_ k. (R,

azln s

(36)

for a=1,2,...,r—1. There are therefore r—1 independent
affinities in this chemical reaction network. These affinities
only depend on the concentrations of the external reservoirs.

The state of thermodynamic equilibrium is reached if all
these affinities vanish, i.e., if the following detailed balance
conditions are satisfied,

L 1 L L
k_1<R1>_ k_2<R2>— = k_r<Rr>—<X>eq. (37)

These conditions fix the concentrations of r—1 reservoirs in
terms of the last reservoir R,. The equilibrium states thus
depend on the last concentration [R,]=(R,)/{) and form a
hyperplane of codimension one in the r-dimensional space of
the concentrations. The distance with respect to this equilib-
rium hyperplane is controlled by the r—1 affinities (36).

C. Generating function of the fluxes
and the fluctuation theorem

In order to treat the r reactions on the same footing, we
introduce the quantities

lnl&"<—R"2 (38)

B 9
T keX)

with p=1,2,...,r. The affinities (36) are related to them by
A,=B,-B,.

The instantaneous flux of the reaction p is defined accord-
ing to

400 40

J= 2 X S,xle)dlt—1,), (39)

X=—% p=—x

where S, y(e,)==*1 whether the transition e, occurring at
time 7, is parallel or antiparallel to the edge p between the
vertices X and X+1 in Fig. 1(a). The corresponding cumu-
lated flux is defined as
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G,1) = J t di'j,(1"). (40)

0

We can introduce the generating function of the statistical
moments of the cumulated fluxes multiplied by their associ-
ated quantities (38) as

O(n,....n) = tlimm - %ln<exp[— 2;21 anpGp(t)D.
(41)

This function can be obtained from the eigenvalue problem
of the following equation:

R0 = 3RO 1)Ky (R R X))
t pu

r

+ 3 PO+ 10k (R~ 0lk_ (X)) %X&;
p=1

— 2 FXO[k, (R )+ k_,X] (42)
p=1

for the mean value

Fxn = (exp[- 2] 78,G,0]) . @3)
defined under the condition that the system is in the state X at
the initial time t=0. We notice that Eq. (42) reduces to the
master equation (32) if n,=1 for p=1,2,...,r. The solution
of Eq. (42) can be written as

C
F(X,t)= ;I’X exp(— 1), (44)
where @ is the eigenvalue, I' is a parameter to be deter-
mined, and C is a normalization constant. Replacing this
solution in Eq. (42), we find that the parameter should be
taken as

1 r
T(ny, ..o im) = 2 (k (R ) "ol _ (X)),

p=1
> k(%)
p=1
(45)
and the eigenvalue as
D(nys e umy) = (E k+p(Rp))[1 ~T(ny, ..., m)
p=1
X'l =n,...,1-n)]. (46)
We notice that this function already has the symmetry
P(7y, ;)= @A - 7y, ..., 1-7) (47)

of the fluctuation theorem.
If we define \,= 7,B,,, we obtain the generating function
of the fluxes as
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W\, ...,\,)
] r
= }Lmoo - ;ln<exp[— Ep:l )\pGp(t)]> (48)
, > k_,et > k_ P
p=1 p=1
= kiR | 1= . , (49)
p=1
Dk, Xkt
p=1 p=1
which has the symmetry
\I,()\l,...,)\r):‘P(Bl—)\l,...,Br—)\r). (50)

Now, the generating function for the independent fluxes is
defined as

Q()\l, "")\V—l) E‘I’()\l, “")\r—l’)\}’:O) (51)
k <R > r—1
e DS k_p(e}‘P— (e 1)
ko | =i
r—1 r—1 l
D k(M= 1) 2 k(M- 1)
- = . (52)
2k,
p=1 i
which thus satisfies the fluctuation theorem (11)
Q()\l, ...,)\r_1)=Q(A1—)\1, ...,Ar_l—)\r_l) (53)

in terms of the macroscopic affinities (36) associated with
the independent macroscopic fluxes.

D. Response coefficients and their symmetry

From the generating function (52), we can derive the
mean fluxes as

a
J- 2
I\,
A=0
r—1
k(R 1
= *I’f ’>ka a1 ——— k_ (et —1)| (54)

Sk,
p=1
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k. (R 1 1 1
Kl >k Ag+ —A2+ —Ad 4 -

k_, 21 3! r

k—P
p=1
r—1 | 1
EIVENLIE R
X2k, Apt AL+ AL : (55)

The response coefficients are obtained by identification with
the expansion (19). Hence, the linear response coefficients
are given by

= (56)

—a r ”
ke

(a# B), (57)

p=1

and we can check that they satisfy the Onsager reciprocity
relations L,g=Lg,.

For the reaction network (29), the higher-order response
coefficients can be related to the linear response coefficients
as follows:

Laa = Maaa = Naaaa = > (58)

Log=Mop5=Nopggg= "+ (a#p), (59)

0=M,5,=Nygys=- (BF7yor B+ or ...).

(60)

We notice that, in spite of the linearity of the kinetic equa-
tions (33), the mean fluxes (54) have a strong nonlinear de-
pendence on the affinities. Moreover, each flux depends on
all the independent affinities of the network in such a way
that the response coefficients are coupling at most pairs of
independent affinities, as revealed by Egs. (58)—(60).

In order to verify the new relations (23) in the case of the
present system, we calculate the diffusivities (24) in the non-
equilibrium steady state

kifR,) ko
aa 2k

D

Ek ep+eAa2k , (61)

—-r p=1 p=1
Sk
P \pFa pFa
p=1

IES %%(e%% ') (a#p). (62

—r 2 k_p
p=1

We notice that the diffusivities (61) and (62) reduce to the
linear response coefficients (56) and (57) at equilibrium A
=0. For A #0, we can now confirm by direct calculation that
the diffusivities (61) and (62) are indeed related to the
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second-order response coefficients (21) by our formulas (23),
showing that microreversibility imposes non trivial relations
between response and fluctuations far from equilibrium as
well.

E. Temporal disorder and entropy production

In the steady state (34), the temporal disorder of the sto-
chastic reactions (29) is characterized by the 7 entropy per
unit time (25) as follows:

h(7) = 2 k, (R )n o <Rp> + ; KX —— X ( )
+0(7), (63)
where we have introduced the special function
x((X)) = exp(In(X + 1)) (64)

of the average (X) of the Poisson distribution (34) (see the
Appendix).

On the other hand, the time-reversed 7 entropy per unit
time is given by

Wi (7) = 2k+,,<R In—— +2 k(X)In—

<X>) <R )
+0(7). (65)

The difference between the time-reversed and the direct 7
entropies per unit time is a measure of the time asymmetry in
the temporal disorder and gives the thermodynamic entropy
production in the steady state according to Eq. (28) as fol-
lows:

r

ds Ry _
al. E(k+p<R> k_,{X))In ;;ﬁ 0. (66)

The entropy production is non-negative as expected from the
second law of thermodynamics. It is positive out of equilib-
rium and vanishes at equilibrium where the detailed balance
conditions (37) are satisfied.

The entropy production (66) can be expressed in terms of
the r—1 independent macroscopic fluxes (54) and the asso-
ciated macroscopic affinities (36). Indeed, the fluxes (54) can
be written as

Ja = k+a<Ra> - k—a<X>~ (67)

Now, Eq. (66) can be transformed as follows:

r—1

55 k_ k. o(R,)
ar | = 2 kR =k =
r 1 M
+ 2;1 (k+p<Rp> kXD 0 k_{X)

L ' g

= (68)
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r—1

=2 JoAas (69)
a=1

and we get Eq. (13) since the last term of the first line of Eq.
(69) vanishes by Eq. (35).

Finally, the generating function (16) of the Lebowitz-
Spohn action functional (15) is obtained if we consider the
eigenvalue problem of Eq. (42) with all the parameters set
equal to 7,=7.

q(n)=d(y, ... (70)

According to the generating function (46) with Eq. (45), we
thus find that

7).

61(77)=<2 k+p<Rp>)[1 - Yyl =9, (71)
p=1

with the function

) =- (72)

>k,
p=1

¢ kuplRy)
> k_, exp( 7 lnzﬁ) ,

such that ¥(0)=7(1)=1. The generating function (71) obeys
the fluctuation theorem (17) and, here also, we recover the
entropy production (66) according to Eq. (18).

IV. REACTIONS BETWEEN TWO RESERVOIRS

In this section, we consider the case of the reaction net-
work (29) between two reservoirs r=2. Besides explicating
for this case the concepts developed in the previous sections,
our purpose is to show that the fluctuation theorem is here
satisfied over finite time intervals, before holding asymptoti-
cally in the long-time limit.

A. Reaction network and affinity

The simplest reaction network sustaining a nonequilib-
rium steady state in the family (29) is the case of an inter-
mediate species X between r=2 reservoirs as follows:

kpp ko
R,=X=R,. (73)
ko ko

The transition rates entering the chemical master equation
(32) are obtained from Egs. (30) and (31) with p=1,2.

In the graph G of the corresponding Markovian process,
there is one cycle between any two states X and X+1 (cf.
Fig. 1 with r=2). The ratio of the products of transition rates
along the two possible orientations of this cycle is given by

W (XX +1DW_o( X +1]X) k_ok, 1 (R})
n =1n N
W (X+1X)OWo(X|IX+1) k_ko(R,)

(74)

which is independent of the state X and defines the single
macroscopic affinity A of this reaction network in terms of
the enthalpy change of the overall reaction R — R,. The as-
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FIG. 2. (Color online) The fluctuating number X(z) of molecules
of the intermediate species in the reaction network (73) with k,,
=k_j=k,=1, k=15, [R]=[R,]=1 for different sizes
=1,10,40. The affinity (74) here takes the value A=In 1.5=0.405,
the mean flux is equal to J=(/5, and the entropy production is
positive %:(Q/S)ln 1.5. In these nonequilibrium steady states, the
mean number of molecules is equal to (X)=4Q/5. The 7 entropy
per unit time of each path is given by i(7) =40 In[2.691/(7Q)] for
Q>>1. The larger (), the larger the 7 entropy and, therefore, the
larger the temporal disorder of the path.

sociated macroflux is the number of molecules R, which are
transformed into the molecules R, per unit time.

The stochastic process can be simulated by Gillespie’s
algorithm [39,40]. Several random paths are depicted in Fig.
2 under different conditions. The temporal disorder of the
fluctuations and its time-reversal symmetry are characterized
in terms of the 7 entropy per unit time (63) and the corre-
sponding time-reversed quantity (65). We observe in Fig. 2
that the path which looks most random is indeed the one with
the largest 7entropy per unit time. On the other hand, we can
verify that the difference between the time-reversed and the
direct 7 entropies per unit time gives the thermodynamic
entropy production (66).

B. Fluctuation theorem in the long-time limit

Different fluctuating quantities are now considered. There
is the instantaneous flux j;(¢) defined by Eq. (8) when the
reaction 1 is completed (see Fig. 3) or j,(f) when the reaction
2 is completed. On the other hand, there is the Lebowitz-
Spohn quantity (15) (see Fig. 4). Since there is only a single
independent flux in this reaction network, the three fluctuat-
ing quantities are related to one another and they share simi-
lar probability distributions.

The generating function of the fluctuating flux j,(¢) is ana-
lytically given by Eq. (52) for r=2, which can be rewritten as

O\ =L(e*=1)(e"=1), (75)
with

= k_ikyo(Ry)

= , 76
k_y+k_, (76)

and the affinity (74). This generating function obeys the sym-
metry relation (53) of the infinite-time fluctuation theorem.
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FIG. 3. (Color online) The fluctuating cumulated flux G(¢)
=[{dt’j1(t") of the reaction 1 versus time  in the network (73) with
ki =k_1=kyn=1, [R|]=[R,]=1, Q=10, for different values of k_,
=1.0,1.1,1.2,1.3,1.4,1.5. The affinity (74) is A=In k_, and it van-
ishes if k_,=1.0, which corresponds to the state of thermodynamic
equilibrium. The other cases correspond to nonequilibrium steady
states. The mean slope of the curves is the associated mean flux
(77), which here takes the value J={j;)=Q(k_,—1)/(k_,+1), van-
ishing consistently at equilibrium.

In nonequilibrium steady states, the mean value of the flux
Ji(2) is given by
kg (Ry) — ko iko(Ry)

ko +k_y )

., _do
J= ()=S0 = L~ 1)
(77)
This flux rapidly increases for A — +o, but saturates at the

constant negative value —L for A— —c. This behavior is
reminiscent of the electric current in a diode. We notice that

100 —————————— MI:IS

Z(1)

FIG. 4. (Color online) The fluctuating Lebowitz-Spohn quantity
(15) versus time 7 in the reaction network (73) with the same pa-
rameter values, affinity A, and mean flux J as in Fig. 3. The mean
slope of the curves is equal to the entropy production %S:JA,
which vanishes at equilibrium when k_,=1.0. Comparing with Fig.
3, we observe that the mean slope is indeed reduced by the affinity

A=In k_z.
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Eq. (76) gives the Onsager coefficient obtained by expanding
the flux in powers of the affinity according to Eq. (19).

The decay rate of the probability that the cumulated flux
takes a value around &,

Prob{%J dr'j (") € (£,E+dé) | ~ e MO (1 — o),
0

(78)

is obtained as the Legendre transform of the generating func-
tion

d dH
H(®=00\) -\¢ with &= f or A=- u
(79)

From Eq. (75), we get the Legendre transform
£\
H@=L|1+e*-2 (—) +et
€3] e L) te

&, (£ }
—§ln[—2L+ (2L> +et |, (80)

which satisfies the symmetry

EA=H(-¢§-H(§), (81)

leading to the following form of the fluctuation theorem:

Prob[%f dr'j,(t") € (§,&+ dg)]
0

e =exp Ar (1 — ).
Prob\‘;f dr'j(t") e (- &- §+d§)J
0

(82)

We notice that the maximal tree could have been chosen as
consisting of the reaction 1 edges. For this choice, each cycle
is formed with a chord made of an edge due to reaction 2,
resulting into similar results for the fluctuating flux j,(z).

The fluctuating quantity (15) by Lebowitz and Spohn [15]
has the generating function (71) with Eq. (72), which here
reduces to

q(m) =L = 1)(e" "7~ 1) = Q(A ), (83)

showing that the quantity Z(z) is proportional to the cumu-
lated flux over long-time intervals according to Z(r)
=AG,(1)=A[}dt'j,(¢"). The entropy production is thus given
by

d;s

_q. _ —JA=
" St_dﬂ(o)_LA(eA—1)—JA—H(—J), (84)

and H(J)=0, as it should. The generating function (83) is
depicted in Fig. 5, which shows the agreement between the
analytical formula and the numerical computation of this
function. As seen in Fig. 5, the generating function is sym-
metric under the reflection 7— 1—#. This symmetry is the
expression of the fluctuation theorem.
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FIG. 5. (Color online) The generating function (83) of the fluc-
tuating Lebowitz-Spohn quantity (15) versus its parameter 7 in the
reaction network (73) with k, =k_;=k,,=1, [R|]=[R,]=1, Q=10
for different values of k_,=1.0,1.1,1.2,1.3,1.4,1.5, as in Figs. 3
and 4. The solid lines depict the generating function computed by
solving numerically Eq. (42) with all the parameters 7,=7. The
crosses give the values of the analytical formula (83), showing the
agreement. We notice that the generating function vanishes identi-
cally at equilibrium when k_,=1.0.

C. Finite-time symmetry relation

For the linear reaction network (73), it is possible to de-
rive the exact probability distribution of the fluxes at every
time 7. The following derivation can be carried out for the
reaction networks (29) between any number r of reservoirs,
but for simplicity we illustrate the method in the simple case
of the reaction network (73) between two reservoirs. The
exact solution allows us to evaluate explicitly in this example
the importance of the finite-time corrections to the fluctua-
tion theorem.

Let us introduce the probability P(X,l,m,f) to have X
particles at time ¢ while having the signed cumulated fluxes /
and m for the reactions 1 and 2. The evolution equation of
this quantity is the following:

dP(X,l,m,t)
dt

=k, (R)P(X = 1,1-1,m,1) — k, (R)P(X,I,m,1)
+k X+ 1)P(X+ 1,1+ 1,m,t) — k_; XP(X,l,m,1)
+ ko (R)P(X = 1,1,m = 1,1) = kyr(Ry)P(X,1,m, 1)
+k(X+1)PX+ 1,1,m+1,1) —k_,XP(X,l,m,1).
(85)

The finite-time generating function of the signed cumulated
fluxes is defined by [8,38]

0 +o0

G(s,sl,s2,t)52 2 sxslls'Z"P(X,l,m,t). (86)

X=0 l,m=—x
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The various probabilities can be recovered by expanding this
generating function in powers of s, s, and s,, or equivalently
by differentiating the generating function. We notice that we
can trace out the information we do not need by setting the
corresponding variable s equal to unity. Normalization re-
quires that G(1,1,1,7)=1 for all time .

Since we are interested in the properties of the steady
state, the initial condition is taken to be

X X
P(X,l,m,t=0)= €_<X>%50,15(),m, (87)
so that
G(S,S],Sz,l = 0) = e<X>(S_1)' (88)

The evolution equation for the generating function
G(s,s;,5,,1) can be deduced from Eq. (85) to get

AG(s,51,5,1)

o = [k, (R (551 — 1) + kyo(Rp) (55, — 1)]

1
X G(s,51,59,1) + [k_l(— - s)

S
1 dG(s,81,82,t
+k_2<__s)]M. (39)
S ds

This first-order partial differential equation can be solved by
using the method of characteristics starting from the initial
condition (88). We find

G(s,51,50,1) = exp[tAcl_)BD - g - (A;f)c(l - e'Dt)]
Xexp s[ ge‘D' + %(1 - e‘D’)} , (90)
with
A=k, (Rp)si+k,o(Ry)s;, 1)
B =k, (R} +kyo(Ry), (92)
C= ke + lﬁ (93)
S $2
D=k +k_,, (94)

such that (X)=8/D. This solution satisfies the normalization
condition and the steady-state solution (88) is recovered if
S1=8= 1.

Since we are interested in the flux, we must evaluate the
solution (90) at s=1 with s;=¢™ and s,=¢™2 to find
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0 400
G(19S1’s29t) = E E sllsglP(X9l9m9t)
X=0 [,m=—o
t t
=\ exp —)\1] dar'j,(t") —Kzf dt'j,(t")
0 0
—~ e—\P()\l,)\z)l. (95)
By Eq. (90), we get
Gl AC-BD (A-BIC-D) | o
S182:1) = €Xp| 1T = = —e
N e—‘l’()\l,)\z)r. (96)

By the way, we can check that the infinite-time generating
function W(\;,\,)=B-.AC/D is indeed given by Eq. (49).

The signed cumulated flux of reaction 1 is given by set-
ting s,=1 in Eq. (96) to get the following finite-time gener-
ating function:

PHYSICAL REVIEW E 77, 031137 (2008)

t
G(1,s5y,1,1) = exp{i—){k_zkH(Rl)(sl = 1) +k_iko(Ry)

x(l 1) L= (R,
- = + 5 —Kk_
5| DQ JZSACAY

X<s1+l—2)}. (97)
S

The probability distribution P(I,f) to have a signed cumu-
lated flux [ up to time ¢ for the reaction 1 can be obtained
using the generating series of the Bessel functions given by
Eq. (9.6.33) of Ref. [47].

2B - 0I(z) (6+0). (98)

[=—00

This probability distribution is thus given by

k_oky((R)Dt + k_iky (R)(1 = ™) 2

P(l,t) = ./\/(t)|:

k_ikyo(Ro)YDt + k_iky (Ry)(1 = ™)

2
xz{ ﬁ\/k_zkﬂmlmt +k k(R = e PYVk_ ko (R)YDE + ke (R)(1 =P |, (99)

where I,(z) denotes the Bessel functions of integer order [47]
and

M) = exp[— é(k-2k+1<R1> +k_1k,(R,))

l_e—Dl‘
—2—2k—1k+1<R1> (100)

D

is the normalization constant with D=k_; +k_,.
According to the following property of the Bessel func-
tions [47]
I(2) =1z), (101)

the ratio P(I,1)/ P(~1,t) obeys the following symmetry rela-
tion:

P(L1) k_sky i (R)Dt + k_ik, 1 (R)(1 = &™) |/
P(=1t) | kikyo(R)Dt+k_ ik (R)(1—e™) |
(102)

In the long-time limit, we thus recover the fluctuation theo-
rem (82) with /=&t

1
P(L,1) 2<k_zk+1(R1>) _eMl for 1o,
P(-1,1) k_1k,o(R5)

where A is the affinity (74).

(103)

The finite-time generating function of the flux can be
found by calculating the sum

+o0

G(l,s,=eM1,0)= >, eMP(1,1)

[|=—00

:<exp{—)\f dt’jl(t’)}> Ee'é(}‘”)t, (104)
0

with N=\,. According to Eq. (97), we thus have

O\ =- %1n<expl— )\f dt’jl(t’)]>
0

= Q(\, ) + 2k_ 1k, (R )(1 = cosh \)

l _ e—Dt
Dt

(105)

where O(\,®)=Q(\) is given by Eq. (75) and the finite-time
correction is observed to decrease as 1/¢. We notice that the
symmetry of the fluctuation theorem is not valid at finite ¢,
but we have instead the following time-dependent symmetry:

O\ = (A1) -\, 1), (106)

with
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FIG. 6. (Color online) The finite-time generating function (105)
of the fluctuating flux 1 versus its parameter \ for different values
of the time ¢, in the reaction network (73) with k,=k_;=k,»=1,
k_,=1.5, [R|]=[R,]=1, and Q=10. In this case, the affinity is A
=In 1.5, the mean flux is /=2, and the mean number of molecules is
(X)=8, L=4, and D=2.5. The solid lines depict the asymptotic
generating function (75) in the limit z—oc. The generating function
vanishes at A=0 and )\:g(t). Moreover, we observe that it is sym-

metric under the reflection A — A(f) =\, as predicted by Eq. (106).

k ok, (Ry) + k_ik, (R (1 = e P)/(Dt)
ko (Ry) + k_ik (R (1= e PY/(Dr)”
(107)

A =1In

The finite-time generating function (105) is depicted in Fig.
6 for different values of the time ¢, together with the
asymptotic generating function (75), which is reached in the
long-time limit — . We observe that, for each value of the
time, the generating function is symmetric under the reflec-

tion A —A(f)—\ with respect to the time-dependent affinity
(107). This result shows that the symmetry of the fluctuation
theorem still holds at finite times for this class of stochastic
processes in the sense of Eq. (106).

V. CONCLUSIONS

In this paper, we have analyzed a class of chemical reac-
tions described by birth-and-death stochastic processes in the
framework of nonequilibrium statistical thermodynamics. In
this theory, relationships are established between the con-
cepts of macroscopic nonequilibrium thermodynamics such
as the entropy production or the De Donder affinities (also
called the thermodynamic forces) [1-3] and the probability
distributions of the nonequilibrium molecular fluctuations. A
landmark in the early developments of this theory is the
work by Onsager and Machlup in the fifties [48]. In the
seventies, great advances were achieved for chemical reac-
tions in mesoscopic nonequilibrium systems. These systems
are ruled by a master equation with transition rates given by
the mass action law of chemical kinetics, as shown by Nic-
olis and co-workers [4-9].

In this framework, the detailed balance conditions defin-
ing the state of thermodynamic equilibrium can be extended
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into nonequilibrium conditions by using the cycles of the
stochastic process, as shown by Hill, Schnakenberg, and oth-
ers [32-34]. Although the transition rates of the master equa-
tion depend both on the concentrations of the reactants in the
external reservoirs and on the instantaneous state of the sys-
tem, the products of transition rates over each cycle and its
time reversal have a ratio which only depends on the macro-
scopic De Donder affinities according to Eq. (6). The De
Donder affinities are fixed by the reactant concentrations and
are nonvanishing if the system is out of equilibrium, i.e., if
the system is crossed by fluxes of matter. At the mesoscopic
level, these fluxes or currents are fluctuating together with
the numbers of molecules involved in the reactions. Along a
path of the stochastic process, these fluxes or currents jump
at random each time a cycle or its time reversal is completed.
As the consequence of the nonequilibrium conditions (6) by
Hill, Schnakenberg, and others [32-34], the fluctuations of
the fluxes or currents obey remarkable relationships known
under the name of fluctuation theorem. A further remarkable
result is that the thermodynamic entropy production—which
is given by combining the statistical averages of the fluxes
with the affinities—finds its origin in the time asymmetry of
the temporal disorder developed by the stochastic process, as
shown by Eq. (28) [37,43-46]. The temporal disorder is
characterized by the quantities (25) and (26), which are remi-
niscent of the Kolmogorov-Sinai entropy per unit time
[36,49].

In the present paper, the connections between these fun-
damental concepts have been analytically established for a
class of stochastic chemical reactions with one intermediate
species produced from several reactants flowing from and to
external reservoirs. For these reactions, we have rigorously
deduced the generating function of the fluctuating fluxes and
shown that the symmetry of the fluctuation theorem for the
currents is satisfied. Moreover, we have verified fundamental
relations obeyed by the nonlinear response coefficients [31],
which are the consequences of the fluctuation theorem for
the currents beyond the Onsager reciprocity relations of lin-
ear response [35]. The generating function of the Lebowitz-
Spohn action functional [15] is also obtained analytically. In
our chemical reaction models, we have explicitly shown that
this fluctuating quantity grows on average as the thermody-
namic entropy production and obeys the corresponding fluc-
tuation theorem.

Besides, we have calculated the characteristic quantities
of temporal disorder, which are the so-called 7 entropy per
unit time (63) and (65). The asymmetry between the forward
and reversed temporal disorders turns out to be directly re-
lated to the thermodynamic entropy production (66) of the
reaction network, confirming the results of Refs. [37,43-46]
for stochastic chemical reactions.

Furthermore, we have also studied the fluctuations of the
chemical reactions over finite-time intervals. The probability
distributions to have a signed cumulated flux up to a given
finite time have been analytically calculated in terms of
Bessel functions by using the chemical master equation. Re-
markably, the probabilities to have opposite fluctuations obey
a time-dependent symmetry relation which is reminiscent of
the fluctuation theorem. The steady-state fluctuation theorem
is recovered in the long-time limit.
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In conclusion, the nonequilibrium chemical reactions that
we have here studied are multilevel complex systems. At the
mesoscopic level, they are described as stochastic processes
ruled by a master equation which can be analytically solved
in spite of their complexity. The probability distributions of
their nonequilibrium fluctuations are highly nontrivial and
differ considerably from Gaussian distributions. Yet, they
obey general relationships valid away from equilibrium and
provide the foundations for the science of complex systems
[50].
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APPENDIX: SPECIAL FUNCTION

In this appendix, we study the function introduced in Eq.
(64) as

x(a) = exp(In(X + 1)),

where the statistical average ( ) is carried out over the Pois-
son distribution (34) of mean value a=(X). We consider the
Taylor expansion around a=0 as well as the asymptotic ex-
pansion for a — .

(A1)

1. Taylor expansion

For small mean value, we can use the definition of the
statistical average and write:

2 3 4
(In(X + 1)>=e-a<a n2+Sm3+Sma+ 5+---).
2 6 24

(A2)

Accordingly, we find that y(a)=1+a In 2+ 0(a?) and, more
precisely,
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x(a) =1+0.693 147a + 0.096 385 54> - 0.015 882 4a>
+0.000 175 723a* + 0.000 606 5194°
—0.000 151 5334 + 0(d"), (A3)

for a—0.

2. Asymptotic expansion

For the asymptotic expansion, we need the central mo-
ments of the Poisson distribution. These moments can be
deduced from the characteristic function according to

8= 3 (X)) = (= 1 (ad)
n=0 "

Now, the average of the logarithm of (X+1) can be trans-
formed as follows:

(In(X+1))=In(X + 1) +{In(1 + 5))
“ (- ])n—l

=In(X+ 1)+ >, (8,  (A5)
n=0 n
with
X—X) X-
p= X _X-a (A6)
X+1) a+1
Performing the Taylor series around a~'=0, we get
1 1 19
InX+1))=lna+—+ + +
(InX+1)=Ina+ '+ 5+ 00 120a
+L+£+O<L> (A7)
20a°  5044° a')’
and finally,
(@)= +l+i+ 7 . 1247 N 2113
X =aT S ™ 24a T 4842 5760a° 38404
5747257 1
+————+ 0| <. (A8)
2903040a a
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